(2a^3+3a^2+7a)+(a^3+a^2-2a)=

Simple and best practice solution for (2a^3+3a^2+7a)+(a^3+a^2-2a)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2a^3+3a^2+7a)+(a^3+a^2-2a)= equation:


Simplifying
(2a3 + 3a2 + 7a) + (a3 + a2 + -2a) = 0

Reorder the terms:
(7a + 3a2 + 2a3) + (a3 + a2 + -2a) = 0

Remove parenthesis around (7a + 3a2 + 2a3)
7a + 3a2 + 2a3 + (a3 + a2 + -2a) = 0

Reorder the terms:
7a + 3a2 + 2a3 + (-2a + a2 + a3) = 0

Remove parenthesis around (-2a + a2 + a3)
7a + 3a2 + 2a3 + -2a + a2 + a3 = 0

Reorder the terms:
7a + -2a + 3a2 + a2 + 2a3 + a3 = 0

Combine like terms: 7a + -2a = 5a
5a + 3a2 + a2 + 2a3 + a3 = 0

Combine like terms: 3a2 + a2 = 4a2
5a + 4a2 + 2a3 + a3 = 0

Combine like terms: 2a3 + a3 = 3a3
5a + 4a2 + 3a3 = 0

Solving
5a + 4a2 + 3a3 = 0

Solving for variable 'a'.

Factor out the Greatest Common Factor (GCF), 'a'.
a(5 + 4a + 3a2) = 0

Subproblem 1

Set the factor 'a' equal to zero and attempt to solve: Simplifying a = 0 Solving a = 0 Move all terms containing a to the left, all other terms to the right. Simplifying a = 0

Subproblem 2

Set the factor '(5 + 4a + 3a2)' equal to zero and attempt to solve: Simplifying 5 + 4a + 3a2 = 0 Solving 5 + 4a + 3a2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1.666666667 + 1.333333333a + a2 = 0 Move the constant term to the right: Add '-1.666666667' to each side of the equation. 1.666666667 + 1.333333333a + -1.666666667 + a2 = 0 + -1.666666667 Reorder the terms: 1.666666667 + -1.666666667 + 1.333333333a + a2 = 0 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + 1.333333333a + a2 = 0 + -1.666666667 1.333333333a + a2 = 0 + -1.666666667 Combine like terms: 0 + -1.666666667 = -1.666666667 1.333333333a + a2 = -1.666666667 The a term is 1.333333333a. Take half its coefficient (0.6666666665). Square it (0.4444444442) and add it to both sides. Add '0.4444444442' to each side of the equation. 1.333333333a + 0.4444444442 + a2 = -1.666666667 + 0.4444444442 Reorder the terms: 0.4444444442 + 1.333333333a + a2 = -1.666666667 + 0.4444444442 Combine like terms: -1.666666667 + 0.4444444442 = -1.2222222228 0.4444444442 + 1.333333333a + a2 = -1.2222222228 Factor a perfect square on the left side: (a + 0.6666666665)(a + 0.6666666665) = -1.2222222228 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

a = {0}

See similar equations:

| (-10a)-(-2a)-(-15a)+(-10)=3 | | 2(5+w)+2w=42 | | sinx=.82584121 | | (x-3)*10=x*7 | | 4/6-2=1x5/9 | | B-c=5 | | 5-2(2y-2)=-3 | | 19d+16d+(-20d)+(-16d)+10d=18 | | 5(2w)+2w=108 | | -3(4-7n)=-4(-5n-1) | | m/5=12 | | 6c-b=5 | | 16j+2j+(-11j)+(-2j)-(-5j)=10 | | 15-x=2(c+3) | | 15x^9/3x^3 | | 12n+12m= | | 8x+12=6x-3 | | 3w+w=300 | | 3(6-5b)=8+5(2-3b) | | 5-3(3w-4)=-8 | | -4(x-5)-6=2(7+6x) | | 8t-2t=12 | | 6w-5w=19 | | 3/5.5 | | 5(5m-7)=-6(2-8m) | | 5z-z=12 | | 10r-5r=20 | | 5.5/3 | | 3v-8(v+2)=-5v-16 | | 3(2w)+2w=300 | | 10k^12/2m^4 | | 6(x-2)/12+2(x+6)/12 |

Equations solver categories